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Kinematics and Basic Assumptions

Learning Objectives

e Understand the fundamental principles of projectile motion and its
component analysis

o Apply kinematic equations to solve motion problems with different launch
and landing heights

e Determine optimal launch angles for maximizing range and analyze
symmetric properties

« Handle special cases including non-level terrain and interpret real-world
effects

1. Kinematics and Basic Assumptions

1.1. Introduction

Projectile motion at A-level treats objects moving near Earth’s surface under gravity
alone. The analysis involves resolving the initial velocity into horizontal and vertical
components, assuming constant gravitational acceleration g, and neglecting air
resistance unless explicitly stated. This approach allows the application of constant-
acceleration equations independently in each direction.

1.2. Core Concepts and Detailed Explanations

1.2.1. 1. Resolve the Initial Velocity
For an initial speed v, launched at angle § above the horizontal, basic trigonometry

of the velocity vector yields:

Definition: Velocity Components

The initial velocity v, at angle 8 decomposes into:

o Horizontal component: vy, = v, cos
o Vertical component: vy, = v, sinf

These components act independently, allowing separate analysis of horizontal
and vertical motion.

1.2.2. 2. Basic Assumptions
The following assumptions underpin the standard projectile motion model:

o Gravity provides constant vertical acceleration of magnitude g (take g ~
9.81 m/s? unless otherwise specified).

« A consistent sign convention applies throughout (common choice: upward
positive, so vertical acceleration a, = —g).

o Air resistance is neglected unless explicitly included in the problem statement.




Kinematics and Basic Assumptions

1.2.3. 3. Component-wise Constant-Acceleration Equations

The kinematic equations apply separately to horizontal (z) and vertical (y) motion.
Using u for initial velocity component, v for final component, a for acceleration, s for
displacement, and ¢ for time:

General kinematic equations:

v=u-+at

t—l—l t2
S=1U —Q
2

v? = u? + 2as
Horizontal motion (no horizontal acceleration, a, = 0):
U, = Vop = Vg COs O
t = v, cos Ot

mZ/UO:E

Vertical motion (vertical acceleration a, = —g with upward positive):

v, = Uy, — gt = vy sinf — gt

1 1
_ 2 _ : 2
Y = vg,t — §gt = vy sin 6t — Egt

Uy = Ugy — 29y

Example 1: Time of Flight and Range

A projectile is launched with vy =20 m/s at § = 30° above horizontal. Take g =
9.81 m/s?.

Resolve:

Voe = 20 c0s30° = 20 x 0.866 = 17.32m/s
Vo, = 208in 30" = 20 x 0.5 = 10.00 m/s

Time of flight (same launch and landing height):

200 2 x 10.00
T=—%= = 2.04
g 9.81 Lt

Range:
R=v,,T=1732x2.04=353m

Result: The projectile lands 35.3 m horizontally after 2.04 seconds of flight.

\ J

Important observations:



Kinematics and Basic Assumptions

o Time t is identical for both components and is often determined from vertical
motion (e.g., time of flight), then substituted into horizontal displacement to
find range.

o For projectiles launched and landing at the same vertical level, time of flight T’
and range R follow specific formulas (detailed in the next major section).

1.3. Summary of Key Takeaways

Key Concepts

« Resolve initial velocity: vy, = v, cost, vy, = v, siné

o Assume constant vertical acceleration a, = —g and a, = 0; neglect air

resistance unless stated
o Apply constant-acceleration equations component-wise:

v=u-+at

t+1 2
S=1U —Qa
2

v?2 = u? + 2as

o Horizontal displacement:

x =wvgcosft

e Vertical displacement:

1
Yy =1vysinft— §gt2

o Use vertical motion to find time, then horizontal motion to find range




Time of Flight, Range, and Maximum Height

2. Time of Flight, Range, and Maximum Height

2.1. Introduction

Projectile motion under constant gravitational acceleration with initial velocity at an
angle exhibits well-defined mathematical relationships. This section derives and
applies the standard formulae for time of flight 7" (when launch and landing occur at
the same vertical level), maximum height H above the launch point, and horizontal
range R, while highlighting the symmetry properties of the motion.

2.2. Core Concepts and Detailed Explanations

2.2.1. 1. Decompose the Initial Velocity

For launch speed v, at angle 6 above horizontal:

« Horizontal component: vy, = v, cos @ (constant, since horizontal acceleration is
Z€ero)
o Vertical component: vy, = vysin@ (affected by gravity)

Taking upward as positive, the vertical acceleration is a,, = —g.

2.2.2. 2. Vertical Motion Equations

The fundamental kinematic equations for vertical motion are:

o Velocity: v, (t) = v, — gt

o Displacement: y(t) = vyt — 1gt?

These assume launch from y = 0 and landing at y = 0.

2.2.3. 3. Time of Flight T’
Setting y(7') = 0 to find the nonzero solution for flight time:

1
O = UOyT - §gT2

Factoring:

The nonzero solution is:

Substituting vy, = v sin 6:



Time of Flight, Range, and Maximum Height

Definition: Time of Flight Formula

T 2v,sin 6
Y

This formula applies when launch and landing heights are equal. The
interpretation is fundamental: the time to rise equals the time to fall, making
the total flight time twice the time needed to reach maximum height.

2.2.4. 4. Maximum Height H
At maximum height, the vertical velocity becomes zero: v

2 = vp, — 29Ay and setting Ay = H:

y = 0. Using the equation

v

Substituting vy, = v, sin 6:

Definition: Maximum Height Formula

B vZ sin? 0
=~
An alternate derivation uses ¢, = U% and the displacement formula to obtain

the same result, confirming the height achieved depends on the square of the
vertical component.

2.2.5. 5. Horizontal Range R
Range is horizontal speed multiplied by total flight time:

R - UOwT

2vysin 6

Substituting vy, = vy cost and T' = ==

2vysinf 20§ sinf cos
g g

R =vycosf -

Applying the double-angle identity 2 sin 6 cos @ = sin 26:



Time of Flight, Range, and Maximum Height

Definition: Range Formula

vE sin 20
g

R=

For fixed v, the range reaches its maximum when sin 20 = 1, which occurs at
0 = 45°.

2.2.6. 6. Symmetry of Ascent and Descent

Neglecting air resistance ensures motion is symmetric about the peak:

o The time to rise to a given height equals the time to fall from that height.

e Speeds at a given height during ascent and descent have equal magnitude;
vertical velocities are equal in magnitude but opposite in sign.

e Horizontal velocity remains constant throughout the flight.

This symmetry follows from energy conservation or kinematics: ”Z depends only on
vertical displacement, not on direction of motion.

Example 2: Finding 7', H, and R
A projectile is launched with v, = 20 m/s at § = 30°. Take g = 9.81 m/s%.
Compute:

_2(20)sin30° 40 x 0.5

TP = = ~ 2.04
9.81 9.81 Lok

H = frac{20?sin? 30°}{2(9.81)} = frac{400 x 0.25}{19.62} ~ 5.10 m
R = frac{20%sin 60°}{9.81} = frac{400 x 0.8660}{9.81} ~ 35.3 m

Result: The projectile reaches 5.10 m, remains airborne for 2.04 s, and travels 35.3
m horizontally.

\ J




Time of Flight, Range, and Maximum Height

Exercise 1: Applying the Formulae

Problem: A ball is kicked with speed v, = 12 m/s at 40°. Calculate the time of
flight, maximum height, and range using g = 9.81 m/s?.

2v, sin 0 _ vZsin?0 _ v2sin26
H , R = Yosin2,

Hint: Apply the three key formulas: T' = T H =" .

Solution:

2(12) sin 40°

T —
9.81

— frac{24 x 0.6428}{9.81} ~ 1.57s

H = frac{12?sin? 40°}{2(9.81)} = frac{144 x 0.4132}{19.62} ~ 3.03 m

R = frac{12?sin80°}{9.81} = frac{144 x 0.9848}{9.81} ~ 14.4m

2.3. Summary of Key Takeaways

Key Concepts

¢ Decompose motion into horizontal (vy, = v, cos @) and vertical (vp, =
vy sin §) components
o Time of flight (same launch and landing height):

_ 2vy,sinb
g
e Maximum height:
B vZ sin? 0
="
o Horizontal range (same launch and landing height):
B vg sin 26
[Y
o Motion is symmetric about the peak: speeds at equal heights on ascent and

R

descent are equal in magnitude; horizontal velocity is constant




Angles, Optimization, and Special Cases

3. Angles, Optimization, and Special Cases

3.1. Introduction

Projectile motion problems frequently ask for the launch angle that maximizes range
or investigate how different launch and landing heights affect the optimum angle.
This section explains why 45° is optimal for level ground, why complementary angles
produce identical ranges, and how to handle special launch and landing geometries
using both algebraic and calculus methods.

3.2. Core Concepts and Detailed Explanations

3.2.1. 1. Range on Level Ground
For a projectile launched at speed v, and angle 6 above horizontal with equal launch
and landing heights, the range is:

B vg sin 20
g

R

To maximize R with fixed vy and g, one maximizes sin 20. Since sinx < 1, the
maximum occurs when sin 20 = 1, which gives 26 = 90°, so:

0 45°

opt =

2 -
vg sin 26

Alternate justification (calculus): Differentiating R(0) = with respect to

0:
dR v} -2cos26
a0 g
Setting this equal to zero gives cos 26 = 0, hence 20 = 90° and 6 = 45°. The second

derivative confirms this is a maximum.

3.2.2. 2. Complementary Angles

For level ground:
R(0) = v2 sin 26
g

If one takes the complementary angle 90° — 6:

2 o 2 o o 2 o
R(90° — 0) = v sm[2(50 0)] _ % sm(liO 20) _ % s;n 20 _ R(®)

Thus, angles 6 and 90° — @ yield identical ranges (for instance, 30° and 60°).

10



Angles, Optimization, and Special Cases

A Warning: Complementary Angle Symmetry

The property that R(6) = R(90° — #) holds only when launch and landing
heights are equal. If heights differ, the trajectory becomes asymmetric and
complementary angles no longer produce equal ranges.

Correct application: Always verify that launch and landing are at the same
vertical level before invoking this symmetry.

Physical interpretation: A low-angle shot travels farther horizontally for a longer
duration but with smaller vertical height. The complementary high-angle shot reaches
greater height but carries smaller horizontal speed. These effects trade off exactly
when launch and landing heights match, yielding identical ranges.

3.2.3. 3. Non-level Launch and Landing Heights

When launch height y,— = 0 (positive if launch is above landing), the simple range
formula no longer applies. Instead, use kinematics directly:

Horizontal position:
z(t) = vy cos Ot

Vertical position:
. 1,
y(t) = yog + vy sin 0t — §gt

Find time of flight ¢; by solving y(t f) = Yunq (Often ground = 0). This yields a
quadratic in t;:

1 .
—§9tf + v 8in bty + Yo — Yiana = 0

Solve for the positive root t;(6), then obtain range:
R(0) = v, cos 0t 4(0)
To optimize R(#), differentiate with respect to 6 and solve % = 0. The resulting
optimal angle generally differs from 45°.
Important limiting behavior:

o If landing height is lower than launch (y,,4 < ¥p), the optimal angle is greater
than 45°.
o If landing height is higher than launch, the optimal angle is less than 45°.

3.2.4. 4. Limiting and Special Cases
« Very low angles (§ — 0°): small vertical component leads to long time near
ground, but the range tends to 0 because sin 260 — 0.

11



Angles, Optimization, and Special Cases

« Very high angles (0 — 90°): horizontal speed becomes small, again causing
range to approach 0.

e When asked for complementary-angle pairs, always confirm that launch and
landing heights are equal; otherwise symmetry fails.

o For targets at the same horizontal level but different heights or with obstacles
present, solve vertical motion explicitly and apply constraints.

Example 3: Complementary Angles
With v, = 30 m/s, compare ranges at 30° and 60°.
Since they are complementary, R(30°) = R(60°). Computing the numeric value:

_302sin60° 900 %2

R = = ~ 79.6
g 9.81 o

Result: Both launch angles produce the same horizontal range of approximately
79.6 m.

Example 4: Launch Above Landing

Launch from height y, = 10 m with v, = 20 m/s at angle 6. Find range as a
function of 6.

Solve 0 = 10 + 20sin §¢ — $(9.81)¢? for t > 0:
1
t= frac{20 sin 6 + sqrt{(20 sin6)? + 4 - 5(9.81) : 10}}{9.81}

(Simplify carefully.) Then:
R(6) = 20 cos 6t(0)

Differentiate numerically or analytically to find the optimal 6 (you will find 0 ~
50°, higher than the 45° for level ground).

Result: The optimal angle shifts upward when launching from an elevated
position.

12



Angles, Optimization, and Special Cases

3.3. Summary of Key Takeaways

Key Concepts

vZsin 20

e For equal launch and landing heights, R = P the optimal angle is 6 =

45° because sin 20 is maximal at unity

o Complementary angles # and 90° — 6 produce equal ranges on level ground

e When launch and landing heights differ, solve the vertical motion quadratic
for time of flight, express R(f) = v, cos 0t (), and optimize—the optimum
generally shifts from 45°

o Use calculus (differentiate R(6)) or numerical methods to find the optimal
angle in non-level scenarios

13



Non-ideal Effects and Problem-solving Strategies

4. Non-ideal Effects and Problem-solving Strategies

4.1. Introduction

Projectile motion in the idealized case (zero air resistance, constant gravity)
constitutes a cornerstone of A-level physics. Real examination problems often include
non-ideal features: different launch and landing heights, solving quadratic equations
for time, and qualitative reasoning about air resistance or spin effects. This section
presents practical methods, worked examples, a problem-solving checklist, common
pitfalls, and practice problems.

4.2. Core Concepts and Detailed Explanations

4.2.1. 1. Kinematic Component Equations

Choose axes with z horizontal and y vertical (positive upward). Resolve the initial
speed v, into components:

Vg = Vg €os 0, Vgy = Up Sin 0
Assuming constant g (directed downward), the component equations become:

z(t) =y + vyt
1 o
y(t) = yo + vo,t — 5t

These form the foundation for all projectile motion analysis.

4.2.2. 2. When Launch and Landing Heights Differ
To find the time(s) of flight, use the vertical equation with the known final height y:

L o
Yr — Yo = Yoyl — §gt

Rearranging yields a quadratic in ¢:
L
59t = vout + (¥; — o) =0

Applying the quadratic formula:

_ Yoy + \/Ugy — 29(90 - yf)
g

t

Selecting the physically relevant root:

o If the projectile is launched from y, and later lands at y;, pick the positive root
corresponding to the time after launch.

o If both roots are positive (common when landing below launch), choose the
larger root for the final landing time.

14



Non-ideal Effects and Problem-solving Strategies

A Warning: Quadratic Sign Convention

When solving the vertical equation, consistency in sign convention is critical. A
common approach is to write:

1
§git2 — Vg, t + (yf — yo) =0

and apply the quadratic formula carefully. Errors in setting up or rearranging
this quadratic account for many student mistakes.

Correct approach: Always write the vertical equation in standard form before
applying the quadratic formula.

4.2.3. 3. Air Resistance and Spin
Unless a specific drag model is provided, keep answers qualitative. Air resistance
typically produces the following effects:

Typical effects of air resistance (drag):

e Reduces horizontal speed — shorter range

e Reduces vertical speed faster — lower maximum height

e Breaks time symmetry: ascent is slowed differently from descent — trajectory is
not symmetric

o For high speeds, drag scales with speed or speed?; exact effects depend on model
and parameters

Spin (Magnus effect):

» Topspin can push trajectory downward; backspin can produce extra lift (longer
time aloft)

o Effects are qualitative unless a lift force model is explicitly given

4.3. Problem-solving Checklist

Following a systematic approach reduces errors:

Draw a clear diagram and axes; mark y,, ¥y, vy, and 6

Resolve v, into vy, and vy,

Write component equations for z(¢) and y(t)

Solve the vertical equation for ¢ (use quadratic formula if needed)

Use the correct root for ¢ and compute horizontal displacement R = vt

SEE AN o

Check units, signs, and whether the root makes physical sense

15



Non-ideal Effects and Problem-solving Strategies

4.4. Worked Examples

4.4.1. Example 5: Projectile Launched from a Cliff
A ball is launched with speed 20 m/s at § = 30° from the top of a cliff y, = 15 m

above ground. Find the range along the horizontal to the landing point (yf =0).
Take g = 9.81 m/s%.

Resolve components:

Vor = 20 c0s30° = 17.32 m/s, Vg, = 20sin 30° = 10.00 m/s

Solve vertical quadratic for y; —y, = —15:

Using the standard form:
1
5(9.81)t2 —10.00t—15=0

Applying the quadratic formula:

_10.00 +v/394.3  10.00 + 19.85
T 2(4.905) 9.81

tone 4~ 10-19.85 : : ~, 10+19.85 _
Two roots arise: t; ~ ~5¢7> (negative, discard), t, & ~c7> = 2.99s.

Range:
R =1vy,t=17.32x299 ~51.8m

Result: The projectile lands approximately 51.8 m from the cliff base.

Note: Careful setup and sign convention are essential for correct results when solving
the quadratic.

4.4.2. Example 6: Symmetric Case for Contrast
If the ball were launched and landed at the same height (y; = y,), the simpler
formula applies directly: T' = 21}% and R = vy, T. This case demonstrates why

understanding the symmetric case is valuable for checking algebraic work.

4.5. Common Mistakes and How to Avoid Them
« Inconsistent sign convention: Always state the positive direction (typically
upward) at the outset.
» Forgetting to resolve v,: Separating velocity into components is essential
before applying kinematic equations.

e Using T = 21;09 when y;— = y,: This formula applies only to symmetric
launch and landing.

e Selecting the wrong root: From the quadratic, discard negative or earlier-
crossing roots unless the problem specifically asks for them.

e Algebraic errors in forming the quadratic: Prefer writing the standard
form

16



Non-ideal Effects and Problem-solving Strategies

1
ith — Vg, t + (yf — yo) =0

before using the formula.

Exercise 2: Solving for Non-level Heights

Problem: A projectile is launched at vy = 25 m/s at = 40° from ground level
toward a platform 6 m above the launch point. Find the time to reach the
platform and the horizontal distance traveled.

Hint: Set y; — y, = 6, form the quadratic, and choose the positive root.
Solution:
Resolve: vy, = 25cos40° &~ 19.15 m/s and vy, = 25sin40° ~ 16.07 m/s

Form the quadratic:
1
5(9.81)t2 —16.07t4+6 =0

Apply the quadratic formula and select the smaller positive root (first passage to
height 6 m): t ~ 0.46 s

Horizontal distance: £ = 19.15 x 0.46 ~ 8.8 m

4.6. Summary of Key Takeaways

Key Concepts

o Always resolve motion into independent horizontal and vertical components
o For different launch and landing heights, form and solve the quadratic

1
§gt2 — Vg, t + (yf — yo) =0

o Select the physically meaningful root from the quadratic (typically the
larger positive value for landing time)

o Verify that roots make physical sense: time must be positive and
correspond to the described motion

o Air resistance qualitatively reduces range, lowers maximum height, and
breaks symmetry

e Systematic problem-solving with clear diagrams, component resolution, and
consistent sign conventions prevents errors

17



Comprehensive Practice Problems

5. Comprehensive Practice Problems

The following problems integrate concepts across all sections and provide
opportunities to develop fluency.

Practice Set A: Basic Kinematics

1. A ball is thrown at 15 m/s at 45°. Find time of flight, range, and maximum
height. (Take g = 9.81 m/s?.)

2. A projectile is fired horizontally from a cliff 20 m high with speed 12 m/s.
How far from the cliff base does it land? (Find time from vertical motion
and then horizontal displacement.)

3. A projectile is launched so that it lands 50 m away on level ground. If v, =
25 m/s, find the two possible launch angles (neglect air resistance).

4. A particle is launched with v, = 18 m/s at § = 60°. Find its velocity
(magnitude and direction) after 1.5 s.

Practice Set B: Optimization and Special Cases

1. For vy = 25m/s on level ground, find: (a) the angle that maximizes range,
(b) the maximum range (take g = 9.81 m/s?).

2. Show algebraically that R(6) = R(90° — ) for level ground.

3. A projectile is launched from an elevated cliff y, = 15 m with v, = 30 m/s.
Derive an expression for R(6), then find numerically the angle that gives
maximum range.

4. A target lies at horizontal distance D and vertical height h relative to
launch. Derive the equation for 6 such that the projectile reaches the
target; discuss when two real solutions exist and when none exist.

18



Comprehensive Practice Problems

Practice Set C: Non-ideal Effects and Problem-solving

1. A ball thrown at 15 m/s at 20° above horizontal lands at the same height.
Find the maximum height and range.

2. Qualitatively, describe three ways air resistance changes a projectile’s

motion compared to the ideal case.

3. A projectile is launched from ground level at v, = 20m/s and § = 35°. A

target platform is located 30 m away horizontally and 8 m above ground.
At what height above the platform does the projectile pass if it follows an
ideal parabolic path?

Answers (brief):

Set A:

1.
2.
3.

Set B: 1la. 45°. 1b. R
2.

Vo, = 10.61m/s, vy, = 10.61 m/s; T =~ 2.16 5; R~ 22.9m; H ~ 5.74 m.
t = 29X8210 ~202s;x =12 x 2.02 ~ 24.2 m.
B,
Use R = 05220 50 5in20 = & = 0.7848; 20 ~ 51.8° or 128.2°, giving 0 ~ 25.9°
Vo
or 64.1°.

. v, = 18¢0s60° = 9.00 m/s; v, = 18sin60° — 9.81 x 1.5 ~ 0.87 m/s; |v| ~

9.04 m/s; angle ~ 5.5° above horizontal.

v}
max — ? ~ 63.6 m.

Use identity sin(180° — 26) = sin 26.

3-4. Follow general method: solve quadratic for ¢, then maximize or apply
discriminant conditions.

19



Summary and Final Remarks

6. Summary and Final Remarks

This guide has presented a comprehensive treatment of projectile motion suitable for
A-level physics. The core framework consists of resolving initial velocity into
components, applying constant-acceleration equations independently to horizontal
and vertical directions, and recognizing the symmetry inherent in frictionless motion.

The derived formulae for time of flight, maximum height, and range—when launch
and landing heights are equal—are central to examination problems. The geometric
insight that a 45° launch angle maximizes range on level ground, and the realization
that complementary angles yield equal ranges, deepen understanding of the
underlying physics.

For non-ideal scenarios with different launch and landing heights, the approach shifts
to solving a quadratic equation for time of flight, then computing range. This method
generalizes to any combination of initial and final heights.

While air resistance and spin effects are beyond the scope of this guide, recognizing
their qualitative impacts (shorter range, lower peak, asymmetric trajectory) prepares
one for more advanced study.

Mastering these techniques through careful problem-solving, attention to sign
conventions, and systematic use of the checklist ensures success on examination
papers.

Final Key Takeaways

e Projectile motion results from independent horizontal and vertical
kinematics under constant gravity

o Component resolution and consistent sign conventions are essential for
error-free problem-solving

e Standard formulae apply when launch and landing heights are equal;
quadratic equations extend to general cases

e Angle optimization and complementary angle symmetry reveal elegant
mathematical structure

e Systematic problem-solving, verification of roots, and qualitative reasoning
about non-ideal effects complete the A-level treatment

e Regular practice with varied problems builds conceptual understanding and
computational fluency

20
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