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Kinematics and Basic Assumptions

Learning Objectives

• Understand the fundamental principles of projectile motion and its 

component analysis

• Apply kinematic equations to solve motion problems with different launch 

and landing heights

• Determine optimal launch angles for maximizing range and analyze 

symmetric properties

• Handle special cases including non-level terrain and interpret real-world 

effects

1. Kinematics and Basic Assumptions

1.1. Introduction

Projectile motion at A-level treats objects moving near Earth’s surface under gravity 

alone. The analysis involves resolving the initial velocity into horizontal and vertical 

components, assuming constant gravitational acceleration 𝑔, and neglecting air 

resistance unless explicitly stated. This approach allows the application of constant-

acceleration equations independently in each direction.

1.2. Core Concepts and Detailed Explanations

1.2.1. 1. Resolve the Initial Velocity

For an initial speed 𝑣0 launched at angle 𝜃 above the horizontal, basic trigonometry 

of the velocity vector yields:

Definition: Velocity Components

The initial velocity 𝑣0 at angle 𝜃 decomposes into:

• Horizontal component: 𝑣0𝑥 = 𝑣0 cos 𝜃
• Vertical component: 𝑣0𝑦 = 𝑣0 sin 𝜃

These components act independently, allowing separate analysis of horizontal 

and vertical motion.

1.2.2. 2. Basic Assumptions

The following assumptions underpin the standard projectile motion model:

• Gravity provides constant vertical acceleration of magnitude 𝑔 (take 𝑔 ≈
9.81 m/s2 unless otherwise specified).

• A consistent sign convention applies throughout (common choice: upward 

positive, so vertical acceleration 𝑎𝑦 = −𝑔).
• Air resistance is neglected unless explicitly included in the problem statement.
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Kinematics and Basic Assumptions

1.2.3. 3. Component-wise Constant-Acceleration Equations

The kinematic equations apply separately to horizontal (𝑥) and vertical (𝑦) motion. 

Using 𝑢 for initial velocity component, 𝑣 for final component, 𝑎 for acceleration, 𝑠 for 

displacement, and 𝑡 for time:

General kinematic equations:

𝑣 = 𝑢 + 𝑎𝑡

𝑠 = 𝑢𝑡 + 1
2
𝑎𝑡2

𝑣2 = 𝑢2 + 2𝑎𝑠

Horizontal motion (no horizontal acceleration, 𝑎𝑥 = 0):

𝑣𝑥 = 𝑣0𝑥 = 𝑣0 cos 𝜃

𝑥 = 𝑣0𝑥𝑡 = 𝑣0 cos 𝜃𝑡

Vertical motion (vertical acceleration 𝑎𝑦 = −𝑔 with upward positive):

𝑣𝑦 = 𝑣0𝑦 − 𝑔𝑡 = 𝑣0 sin 𝜃 − 𝑔𝑡

𝑦 = 𝑣0𝑦𝑡 −
1
2
𝑔𝑡2 = 𝑣0 sin 𝜃𝑡 −

1
2
𝑔𝑡2

𝑣2𝑦 = 𝑣20𝑦 − 2𝑔𝑦

Example 1: Time of Flight and Range

A projectile is launched with 𝑣0 = 20 m/s at 𝜃 = 30∘ above horizontal. Take 𝑔 =
9.81 m/s2.

Resolve:

𝑣0𝑥 = 20 cos 30∘ = 20 × 0.866 = 17.32 m/s

𝑣0𝑦 = 20 sin 30∘ = 20 × 0.5 = 10.00 m/s

Time of flight (same launch and landing height):

𝑇 =
2𝑣0𝑦
𝑔

= 2 × 10.00
9.81

= 2.04 s

Range:

𝑅 = 𝑣0𝑥𝑇 = 17.32 × 2.04 = 35.3 m

Result: The projectile lands 35.3 m horizontally after 2.04 seconds of flight.

Important observations:
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Kinematics and Basic Assumptions

• Time 𝑡 is identical for both components and is often determined from vertical 

motion (e.g., time of flight), then substituted into horizontal displacement to 

find range.

• For projectiles launched and landing at the same vertical level, time of flight 𝑇  

and range 𝑅 follow specific formulas (detailed in the next major section).

1.3. Summary of Key Takeaways

Key Concepts

• Resolve initial velocity: 𝑣0𝑥 = 𝑣0 cos 𝜃, 𝑣0𝑦 = 𝑣0 sin 𝜃
• Assume constant vertical acceleration 𝑎𝑦 = −𝑔 and 𝑎𝑥 = 0; neglect air 

resistance unless stated

• Apply constant-acceleration equations component-wise:

𝑣 = 𝑢 + 𝑎𝑡

,

𝑠 = 𝑢𝑡 + 1
2
𝑎𝑡2

,

𝑣2 = 𝑢2 + 2𝑎𝑠
• Horizontal displacement:

𝑥 = 𝑣0 cos 𝜃 𝑡
• Vertical displacement:

𝑦 = 𝑣0 sin 𝜃 𝑡 −
1
2
𝑔𝑡2

• Use vertical motion to find time, then horizontal motion to find range
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Time of Flight, Range, and Maximum Height

2. Time of Flight, Range, and Maximum Height

2.1. Introduction

Projectile motion under constant gravitational acceleration with initial velocity at an 

angle exhibits well-defined mathematical relationships. This section derives and 

applies the standard formulae for time of flight 𝑇  (when launch and landing occur at 

the same vertical level), maximum height 𝐻 above the launch point, and horizontal 

range 𝑅, while highlighting the symmetry properties of the motion.

2.2. Core Concepts and Detailed Explanations

2.2.1. 1. Decompose the Initial Velocity

For launch speed 𝑣0 at angle 𝜃 above horizontal:

• Horizontal component: 𝑣0𝑥 = 𝑣0 cos 𝜃 (constant, since horizontal acceleration is 

zero)

• Vertical component: 𝑣0𝑦 = 𝑣0 sin 𝜃 (affected by gravity)

Taking upward as positive, the vertical acceleration is 𝑎𝑦 = −𝑔.

2.2.2. 2. Vertical Motion Equations

The fundamental kinematic equations for vertical motion are:

• Velocity: 𝑣𝑦(𝑡) = 𝑣0𝑦 − 𝑔𝑡
• Displacement: 𝑦(𝑡) = 𝑣0𝑦𝑡 − 1

2𝑔𝑡
2

These assume launch from 𝑦 = 0 and landing at 𝑦 = 0.

2.2.3. 3. Time of Flight 𝑇
Setting 𝑦(𝑇 ) = 0 to find the nonzero solution for flight time:

0 = 𝑣0𝑦𝑇 − 1
2
𝑔𝑇 2

Factoring:

𝑇(𝑣0𝑦 −
1
2
𝑔𝑇) = 0

The nonzero solution is:

𝑣0𝑦 −
1
2
𝑔𝑇 = 0 ⇒ 𝑇 =

2𝑣0𝑦
𝑔

Substituting 𝑣0𝑦 = 𝑣0 sin 𝜃:
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Time of Flight, Range, and Maximum Height

Definition: Time of Flight Formula

𝑇 = 2𝑣0 sin 𝜃
𝑔

This formula applies when launch and landing heights are equal. The 

interpretation is fundamental: the time to rise equals the time to fall, making 

the total flight time twice the time needed to reach maximum height.

2.2.4. 4. Maximum Height 𝐻
At maximum height, the vertical velocity becomes zero: 𝑣𝑦 = 0. Using the equation 

𝑣2𝑦 = 𝑣20𝑦 − 2𝑔Δ𝑦 and setting Δ𝑦 = 𝐻:

0 = 𝑣20𝑦 − 2𝑔𝐻 ⇒ 𝐻 =
𝑣20𝑦
2𝑔

Substituting 𝑣0𝑦 = 𝑣0 sin 𝜃:

Definition: Maximum Height Formula

𝐻 = 𝑣20 sin2 𝜃
2𝑔

An alternate derivation uses 𝑡up = 𝑣0𝑦
𝑔  and the displacement formula to obtain 

the same result, confirming the height achieved depends on the square of the 

vertical component.

2.2.5. 5. Horizontal Range 𝑅
Range is horizontal speed multiplied by total flight time:

𝑅 = 𝑣0𝑥𝑇

Substituting 𝑣0𝑥 = 𝑣0 cos 𝜃 and 𝑇 = 2𝑣0 sin 𝜃
𝑔 :

𝑅 = 𝑣0 cos 𝜃 ⋅
2𝑣0 sin 𝜃

𝑔
= 2𝑣20 sin 𝜃 cos 𝜃

𝑔

Applying the double-angle identity 2 sin 𝜃 cos 𝜃 = sin 2𝜃:
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Time of Flight, Range, and Maximum Height

Definition: Range Formula

𝑅 = 𝑣20 sin 2𝜃
𝑔

For fixed 𝑣0, the range reaches its maximum when sin 2𝜃 = 1, which occurs at 

𝜃 = 45∘.

2.2.6. 6. Symmetry of Ascent and Descent

Neglecting air resistance ensures motion is symmetric about the peak:

• The time to rise to a given height equals the time to fall from that height.

• Speeds at a given height during ascent and descent have equal magnitude; 

vertical velocities are equal in magnitude but opposite in sign.

• Horizontal velocity remains constant throughout the flight.

This symmetry follows from energy conservation or kinematics: 𝑣2𝑦 depends only on 

vertical displacement, not on direction of motion.

Example 2: Finding 𝑇 , 𝐻, and 𝑅

A projectile is launched with 𝑣0 = 20 m/s at 𝜃 = 30∘. Take 𝑔 = 9.81 m/s2.

Compute:

𝑇 = 2(20) sin 30∘

9.81
= 40 × 0.5

9.81
≈ 2.04 s

𝐻 = frac{202 sin2 30∘}{2(9.81)} = frac{400 × 0.25}{19.62} ≈ 5.10 m

𝑅 = frac{202 sin 60∘}{9.81} = frac{400 × 0.8660}{9.81} ≈ 35.3 m

Result: The projectile reaches 5.10 m, remains airborne for 2.04 s, and travels 35.3 

m horizontally.
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Time of Flight, Range, and Maximum Height

Exercise 1: Applying the Formulae

Problem: A ball is kicked with speed 𝑣0 = 12 m/s at 40∘. Calculate the time of 

flight, maximum height, and range using 𝑔 = 9.81 m/s2.

Hint: Apply the three key formulas: 𝑇 = 2𝑣0 sin 𝜃
𝑔 , 𝐻 = 𝑣20 sin2 𝜃

2𝑔 , 𝑅 = 𝑣20 sin 2𝜃
𝑔 .

Solution:

𝑇 = 2(12) sin 40∘

9.81
= frac{24 × 0.6428}{9.81} ≈ 1.57 s

𝐻 = frac{122 sin2 40∘}{2(9.81)} = frac{144 × 0.4132}{19.62} ≈ 3.03 m

𝑅 = frac{122 sin 80∘}{9.81} = frac{144 × 0.9848}{9.81} ≈ 14.4 m

2.3. Summary of Key Takeaways

Key Concepts

• Decompose motion into horizontal (𝑣0𝑥 = 𝑣0 cos 𝜃) and vertical (𝑣0𝑦 =
𝑣0 sin 𝜃) components

• Time of flight (same launch and landing height):

𝑇 = 2𝑣0 sin 𝜃
𝑔

• Maximum height:

𝐻 = 𝑣20 sin2 𝜃
2𝑔

• Horizontal range (same launch and landing height):

𝑅 = 𝑣20 sin 2𝜃
𝑔

• Motion is symmetric about the peak: speeds at equal heights on ascent and 

descent are equal in magnitude; horizontal velocity is constant
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Angles, Optimization, and Special Cases

3. Angles, Optimization, and Special Cases

3.1. Introduction

Projectile motion problems frequently ask for the launch angle that maximizes range 

or investigate how different launch and landing heights affect the optimum angle. 

This section explains why 45∘ is optimal for level ground, why complementary angles 

produce identical ranges, and how to handle special launch and landing geometries 

using both algebraic and calculus methods.

3.2. Core Concepts and Detailed Explanations

3.2.1. 1. Range on Level Ground

For a projectile launched at speed 𝑣0 and angle 𝜃 above horizontal with equal launch 

and landing heights, the range is:

𝑅 = 𝑣20 sin 2𝜃
𝑔

To maximize 𝑅 with fixed 𝑣0 and 𝑔, one maximizes sin 2𝜃. Since sin 𝑥 ≤ 1, the 

maximum occurs when sin 2𝜃 = 1, which gives 2𝜃 = 90∘, so:

𝜃opt = 45∘

Alternate justification (calculus): Differentiating 𝑅(𝜃) = 𝑣20 sin 2𝜃
𝑔  with respect to 

𝜃:

𝑑𝑅
𝑑𝜃

= 𝑣20 ⋅ 2 cos 2𝜃
𝑔

Setting this equal to zero gives cos 2𝜃 = 0, hence 2𝜃 = 90∘ and 𝜃 = 45∘. The second 

derivative confirms this is a maximum.

3.2.2. 2. Complementary Angles

For level ground:

𝑅(𝜃) = 𝑣20 sin 2𝜃
𝑔

If one takes the complementary angle 90∘ − 𝜃:

𝑅(90∘ − 𝜃) = 𝑣20 sin[2(90∘ − 𝜃)]
𝑔

= 𝑣20 sin(180∘ − 2𝜃)
𝑔

= 𝑣20 sin 2𝜃
𝑔

= 𝑅(𝜃)

Thus, angles 𝜃 and 90∘ − 𝜃 yield identical ranges (for instance, 30∘ and 60∘).
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Angles, Optimization, and Special Cases

⚠️ Warning: Complementary Angle Symmetry

The property that 𝑅(𝜃) = 𝑅(90∘ − 𝜃) holds only when launch and landing 

heights are equal. If heights differ, the trajectory becomes asymmetric and 

complementary angles no longer produce equal ranges.

Correct application: Always verify that launch and landing are at the same 

vertical level before invoking this symmetry.

Physical interpretation: A low-angle shot travels farther horizontally for a longer 

duration but with smaller vertical height. The complementary high-angle shot reaches 

greater height but carries smaller horizontal speed. These effects trade off exactly 

when launch and landing heights match, yielding identical ranges.

3.2.3. 3. Non-level Launch and Landing Heights

When launch height 𝑦0¬ = 0 (positive if launch is above landing), the simple range 

formula no longer applies. Instead, use kinematics directly:

Horizontal position:

𝑥(𝑡) = 𝑣0 cos 𝜃𝑡

Vertical position:

𝑦(𝑡) = 𝑦0 + 𝑣0 sin 𝜃𝑡 −
1
2
𝑔𝑡2

Find time of flight 𝑡𝑓  by solving 𝑦(𝑡𝑓) = 𝑦land (often ground = 0). This yields a 

quadratic in 𝑡𝑓 :

−1
2
𝑔𝑡2𝑓 + 𝑣0 sin 𝜃𝑡𝑓 + 𝑦0 − 𝑦land = 0

Solve for the positive root 𝑡𝑓(𝜃), then obtain range:

𝑅(𝜃) = 𝑣0 cos 𝜃𝑡𝑓(𝜃)

To optimize 𝑅(𝜃), differentiate with respect to 𝜃 and solve 𝑑𝑅𝑑𝜃 = 0. The resulting 

optimal angle generally differs from 45∘.

Important limiting behavior:

• If landing height is lower than launch (𝑦land < 𝑦0), the optimal angle is greater 

than 45∘.
• If landing height is higher than launch, the optimal angle is less than 45∘.

3.2.4. 4. Limiting and Special Cases

• Very low angles (𝜃 → 0∘): small vertical component leads to long time near 

ground, but the range tends to 0 because sin 2𝜃 → 0.
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Angles, Optimization, and Special Cases

• Very high angles (𝜃 → 90∘): horizontal speed becomes small, again causing 

range to approach 0.

• When asked for complementary-angle pairs, always confirm that launch and 

landing heights are equal; otherwise symmetry fails.

• For targets at the same horizontal level but different heights or with obstacles 

present, solve vertical motion explicitly and apply constraints.

Example 3: Complementary Angles

With 𝑣0 = 30 m/s, compare ranges at 30∘ and 60∘.

Since they are complementary, 𝑅(30∘) = 𝑅(60∘). Computing the numeric value:

𝑅 = 302 sin 60∘

𝑔
=

900 ⋅
√
3
2

9.81
≈ 79.6 m

Result: Both launch angles produce the same horizontal range of approximately 

79.6 m.

Example 4: Launch Above Landing

Launch from height 𝑦0 = 10 m with 𝑣0 = 20 m/s at angle 𝜃. Find range as a 

function of 𝜃.

Solve 0 = 10 + 20 sin 𝜃𝑡 − 1
2(9.81)𝑡

2 for 𝑡 > 0:

𝑡 = frac{20 sin 𝜃 + sqrt{(20 sin 𝜃)2 + 4 ⋅ 1
2
(9.81) ⋅ 10}}{9.81}

(Simplify carefully.) Then:

𝑅(𝜃) = 20 cos 𝜃𝑡(𝜃)

Differentiate numerically or analytically to find the optimal 𝜃 (you will find 𝜃 ≈
50∘, higher than the 45∘ for level ground).

Result: The optimal angle shifts upward when launching from an elevated 

position.
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3.3. Summary of Key Takeaways

Key Concepts

• For equal launch and landing heights, 𝑅 = 𝑣20 sin 2𝜃
𝑔 ; the optimal angle is 𝜃 =

45∘ because sin 2𝜃 is maximal at unity

• Complementary angles 𝜃 and 90∘ − 𝜃 produce equal ranges on level ground

• When launch and landing heights differ, solve the vertical motion quadratic 

for time of flight, express 𝑅(𝜃) = 𝑣0 cos 𝜃𝑡𝑓(𝜃), and optimize—the optimum 

generally shifts from 45∘
• Use calculus (differentiate 𝑅(𝜃)) or numerical methods to find the optimal 

angle in non-level scenarios
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Non-ideal Effects and Problem-solving Strategies

4. Non-ideal Effects and Problem-solving Strategies

4.1. Introduction

Projectile motion in the idealized case (zero air resistance, constant gravity) 

constitutes a cornerstone of A-level physics. Real examination problems often include 

non-ideal features: different launch and landing heights, solving quadratic equations 

for time, and qualitative reasoning about air resistance or spin effects. This section 

presents practical methods, worked examples, a problem-solving checklist, common 

pitfalls, and practice problems.

4.2. Core Concepts and Detailed Explanations

4.2.1. 1. Kinematic Component Equations

Choose axes with 𝑥 horizontal and 𝑦 vertical (positive upward). Resolve the initial 

speed 𝑣0 into components:

𝑣0𝑥 = 𝑣0 cos 𝜃, 𝑣0𝑦 = 𝑣0 sin 𝜃

Assuming constant 𝑔 (directed downward), the component equations become:

𝑥(𝑡) = 𝑥0 + 𝑣0𝑥𝑡

𝑦(𝑡) = 𝑦0 + 𝑣0𝑦𝑡 −
1
2
𝑔𝑡2

These form the foundation for all projectile motion analysis.

4.2.2. 2. When Launch and Landing Heights Differ

To find the time(s) of flight, use the vertical equation with the known final height 𝑦𝑓 :

𝑦𝑓 − 𝑦0 = 𝑣0𝑦𝑡 −
1
2
𝑔𝑡2

Rearranging yields a quadratic in 𝑡:

1
2
𝑔𝑡2 − 𝑣0𝑦𝑡 + (𝑦𝑓 − 𝑦0) = 0

Applying the quadratic formula:

𝑡 =
𝑣0𝑦 ±√𝑣20𝑦 − 2𝑔(𝑦0 − 𝑦𝑓)

𝑔

Selecting the physically relevant root:

• If the projectile is launched from 𝑦0 and later lands at 𝑦𝑓 , pick the positive root 

corresponding to the time after launch.

• If both roots are positive (common when landing below launch), choose the 

larger root for the final landing time.
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⚠️ Warning: Quadratic Sign Convention

When solving the vertical equation, consistency in sign convention is critical. A 

common approach is to write:

1
2
𝑔𝑡2 − 𝑣0𝑦𝑡 + (𝑦𝑓 − 𝑦0) = 0

and apply the quadratic formula carefully. Errors in setting up or rearranging 

this quadratic account for many student mistakes.

Correct approach: Always write the vertical equation in standard form before 

applying the quadratic formula.

4.2.3. 3. Air Resistance and Spin

Unless a specific drag model is provided, keep answers qualitative. Air resistance 

typically produces the following effects:

Typical effects of air resistance (drag):

• Reduces horizontal speed → shorter range

• Reduces vertical speed faster → lower maximum height

• Breaks time symmetry: ascent is slowed differently from descent → trajectory is 

not symmetric

• For high speeds, drag scales with speed or speed²; exact effects depend on model 

and parameters

Spin (Magnus effect):

• Topspin can push trajectory downward; backspin can produce extra lift (longer 

time aloft)

• Effects are qualitative unless a lift force model is explicitly given

4.3. Problem-solving Checklist

Following a systematic approach reduces errors:

1. Draw a clear diagram and axes; mark 𝑦0, 𝑦𝑓 , 𝑣0, and 𝜃
2. Resolve 𝑣0 into 𝑣0𝑥 and 𝑣0𝑦
3. Write component equations for 𝑥(𝑡) and 𝑦(𝑡)
4. Solve the vertical equation for 𝑡 (use quadratic formula if needed)

5. Use the correct root for 𝑡 and compute horizontal displacement 𝑅 = 𝑣0𝑥𝑡
6. Check units, signs, and whether the root makes physical sense
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4.4. Worked Examples

4.4.1. Example 5: Projectile Launched from a Cliff

A ball is launched with speed 20 m/s at 𝜃 = 30∘ from the top of a cliff 𝑦0 = 15 m 

above ground. Find the range along the horizontal to the landing point (𝑦𝑓 = 0). 
Take 𝑔 = 9.81 m/s2.

Resolve components:

𝑣0𝑥 = 20 cos 30∘ = 17.32 m/s, 𝑣0𝑦 = 20 sin 30∘ = 10.00 m/s

Solve vertical quadratic for 𝑦𝑓 − 𝑦0 = −15:

Using the standard form:

1
2
(9.81)𝑡2 − 10.00𝑡 − 15 = 0

Applying the quadratic formula:

𝑡 = 10.00 ±
√
394.3

2(4.905)
= 10.00 ± 19.85

9.81

Two roots arise: 𝑡1 ≈ 10−19.85
9.81  (negative, discard), 𝑡2 ≈ 10+19.85

9.81 = 2.99 s.

Range:

𝑅 = 𝑣0𝑥𝑡 = 17.32 × 2.99 ≈ 51.8 m

Result: The projectile lands approximately 51.8 m from the cliff base.

Note: Careful setup and sign convention are essential for correct results when solving 

the quadratic.

4.4.2. Example 6: Symmetric Case for Contrast

If the ball were launched and landed at the same height (𝑦𝑓 = 𝑦0), the simpler 

formula applies directly: 𝑇 = 2𝑣0𝑦
𝑔  and 𝑅 = 𝑣0𝑥𝑇 . This case demonstrates why 

understanding the symmetric case is valuable for checking algebraic work.

4.5. Common Mistakes and How to Avoid Them

• Inconsistent sign convention: Always state the positive direction (typically 

upward) at the outset.

• Forgetting to resolve 𝑣0: Separating velocity into components is essential 

before applying kinematic equations.

• Using 𝑇 =
2𝑣0𝑦

𝑔
 when 𝑦𝑓¬ = 𝑦0: This formula applies only to symmetric 

launch and landing.

• Selecting the wrong root: From the quadratic, discard negative or earlier-

crossing roots unless the problem specifically asks for them.

• Algebraic errors in forming the quadratic: Prefer writing the standard 

form
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1
2
𝑔𝑡2 − 𝑣0𝑦𝑡 + (𝑦𝑓 − 𝑦0) = 0

before using the formula.

Exercise 2: Solving for Non-level Heights

Problem: A projectile is launched at 𝑣0 = 25 m/s at 𝜃 = 40∘ from ground level 

toward a platform 6 m above the launch point. Find the time to reach the 

platform and the horizontal distance traveled.

Hint: Set 𝑦𝑓 − 𝑦0 = 6, form the quadratic, and choose the positive root.

Solution:

Resolve: 𝑣0𝑥 = 25 cos 40∘ ≈ 19.15 m/s and 𝑣0𝑦 = 25 sin 40∘ ≈ 16.07 m/s

Form the quadratic:

1
2
(9.81)𝑡2 − 16.07𝑡 + 6 = 0

Apply the quadratic formula and select the smaller positive root (first passage to 

height 6 m): 𝑡 ≈ 0.46 s

Horizontal distance: 𝑥 = 19.15 × 0.46 ≈ 8.8 m

4.6. Summary of Key Takeaways

Key Concepts

• Always resolve motion into independent horizontal and vertical components

• For different launch and landing heights, form and solve the quadratic

1
2
𝑔𝑡2 − 𝑣0𝑦𝑡 + (𝑦𝑓 − 𝑦0) = 0

• Select the physically meaningful root from the quadratic (typically the 

larger positive value for landing time)

• Verify that roots make physical sense: time must be positive and 

correspond to the described motion

• Air resistance qualitatively reduces range, lowers maximum height, and 

breaks symmetry

• Systematic problem-solving with clear diagrams, component resolution, and 

consistent sign conventions prevents errors
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5. Comprehensive Practice Problems

The following problems integrate concepts across all sections and provide 

opportunities to develop fluency.

Practice Set A: Basic Kinematics

1. A ball is thrown at 15 m/s at 45∘. Find time of flight, range, and maximum 

height. (Take 𝑔 = 9.81 m/s2.)

2. A projectile is fired horizontally from a cliff 20 m high with speed 12 m/s. 
How far from the cliff base does it land? (Find time from vertical motion 

and then horizontal displacement.)

3. A projectile is launched so that it lands 50 m away on level ground. If 𝑣0 =
25 m/s, find the two possible launch angles (neglect air resistance).

4. A particle is launched with 𝑣0 = 18 m/s at 𝜃 = 60∘. Find its velocity 

(magnitude and direction) after 1.5 s.

Practice Set B: Optimization and Special Cases

1. For 𝑣0 = 25 m/s on level ground, find: (a) the angle that maximizes range, 

(b) the maximum range (take 𝑔 = 9.81 m/s2).

2. Show algebraically that 𝑅(𝜃) = 𝑅(90∘ − 𝜃) for level ground.

3. A projectile is launched from an elevated cliff 𝑦0 = 15 m with 𝑣0 = 30 m/s. 
Derive an expression for 𝑅(𝜃), then find numerically the angle that gives 

maximum range.

4. A target lies at horizontal distance 𝐷 and vertical height ℎ relative to 

launch. Derive the equation for 𝜃 such that the projectile reaches the 

target; discuss when two real solutions exist and when none exist.
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Practice Set C: Non-ideal Effects and Problem-solving

1. A ball thrown at 15 m/s at 20∘ above horizontal lands at the same height. 

Find the maximum height and range.

2. Qualitatively, describe three ways air resistance changes a projectile’s 

motion compared to the ideal case.

3. A projectile is launched from ground level at 𝑣0 = 20 m/s and 𝜃 = 35∘. A 

target platform is located 30 m away horizontally and 8 m above ground. 

At what height above the platform does the projectile pass if it follows an 

ideal parabolic path?

Answers (brief):

Set A:

1. 𝑣0𝑥 = 10.61 m/s, 𝑣0𝑦 = 10.61 m/s; 𝑇 ≈ 2.16 s; 𝑅 ≈ 22.9 m; 𝐻 ≈ 5.74 m.

2. 𝑡 = √2×20
9.81 ≈ 2.02 s; 𝑥 = 12 × 2.02 ≈ 24.2 m.

3. Use 𝑅 = 𝑣20 sin 2𝜃
𝑔 , so sin 2𝜃 = 𝑅𝑔

𝑣20
= 0.7848; 2𝜃 ≈ 51.8∘ or 128.2∘, giving 𝜃 ≈ 25.9∘ 

or 64.1∘.
4. 𝑣𝑥 = 18 cos 60∘ = 9.00 m/s; 𝑣𝑦 = 18 sin 60∘ − 9.81 × 1.5 ≈ 0.87 m/s; |𝑣| ≈

9.04 m/s; angle ≈ 5.5∘ above horizontal.

Set B: 1a. 45∘. 1b. 𝑅max =
𝑣20
𝑔 ≈ 63.6 m.

2. Use identity sin(180∘ − 2𝜃) = sin 2𝜃.

3–4. Follow general method: solve quadratic for 𝑡, then maximize or apply 

discriminant conditions.
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6. Summary and Final Remarks

This guide has presented a comprehensive treatment of projectile motion suitable for 

A-level physics. The core framework consists of resolving initial velocity into 

components, applying constant-acceleration equations independently to horizontal 

and vertical directions, and recognizing the symmetry inherent in frictionless motion.

The derived formulae for time of flight, maximum height, and range—when launch 

and landing heights are equal—are central to examination problems. The geometric 

insight that a 45∘ launch angle maximizes range on level ground, and the realization 

that complementary angles yield equal ranges, deepen understanding of the 

underlying physics.

For non-ideal scenarios with different launch and landing heights, the approach shifts 

to solving a quadratic equation for time of flight, then computing range. This method 

generalizes to any combination of initial and final heights.

While air resistance and spin effects are beyond the scope of this guide, recognizing 

their qualitative impacts (shorter range, lower peak, asymmetric trajectory) prepares 

one for more advanced study.

Mastering these techniques through careful problem-solving, attention to sign 

conventions, and systematic use of the checklist ensures success on examination 

papers.

Final Key Takeaways

• Projectile motion results from independent horizontal and vertical 

kinematics under constant gravity

• Component resolution and consistent sign conventions are essential for 

error-free problem-solving

• Standard formulae apply when launch and landing heights are equal; 

quadratic equations extend to general cases

• Angle optimization and complementary angle symmetry reveal elegant 

mathematical structure

• Systematic problem-solving, verification of roots, and qualitative reasoning 

about non-ideal effects complete the A-level treatment

• Regular practice with varied problems builds conceptual understanding and 

computational fluency
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